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  Abstract
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Lower extremity non-contact soft tissue (LE-ST) injuries are prevalent in elite futsal. The purpose of this study was to analyze and
compare the individual and combined ability of several measures obtained from questionnaires and field-based tests to
prospectively predict LE-ST injuries after having applied a range of supervised Machine Learning techniques. One hundred and
thirty-nine elite futsal players underwent a pre-season screening evaluation that included individual characteristics; measures
related to sleep quality, athlete burnout, psychological characteristics related to sport performance and self-reported perception
of chronic ankle instability. A number of neuromuscular performance measures obtained through three field-based tests (isometric
hip strength, dynamic postural control [Y-Balance] and lower extremity joints range of motion [ROM-Sport battery]) were also
recorded. Injury incidence was monitored over one competitive season. There were 25 LE-ST injuries. Only those groups of
measures from two of the field-based tests (ROM-Sport battery and Y-Balance), as independent data sets, were able to build robust
models (area under the receiver operating characteristic curve [AUC] score ≥ 0.7) to identify elite futsal players at risk of
sustaining a LE-ST injury. Unlike the measures obtained from the five questionnaires selected, the neuromuscular performance
measures did build robust prediction models (AUC score ≥ 0.7). The inclusion in the same data set of the measures recorded from
all the questionnaires and field-based tests did not result in models with significantly higher performance scores. The models
developed might help coaches, physical trainers and medical practitioners in the decision-making process for injury prevention in
futsal.

   

  Contribution to the field

The current study has identified a range of simple, quick and easy to employ field-based measures can have good predictive power
in determining LE-ST injuries in elite futsal players. Given that these field-based tests require little equipment and can be
employed quickly by trained staff, they should be included as an essential component of the injury management strategy in elite
futsal.
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Abstract 25 

Lower extremity non-contact soft tissue (LE-ST) injuries are prevalent in elite futsal. The 26 

purpose of this study was to develop robust screening models based on pre-season 27 

measures obtained from questionnaires and field-based tests to prospectively predict LE-28 

ST injuries after having applied a range of supervised Machine Learning techniques. One 29 

hundred and thirty-nine elite futsal players underwent a pre-season screening evaluation 30 

that included individual characteristics; measures related to sleep quality, athlete burnout, 31 

psychological characteristics related to sport performance and self-reported perception of 32 

chronic ankle instability. A number of neuromuscular performance measures obtained 33 

through three field-based tests (isometric hip strength, dynamic postural control [Y-34 

Balance] and lower extremity joints range of motion [ROM-Sport battery]) were also 35 

recorded. Injury incidence was monitored over one competitive season. There were 25 36 

LE-ST injuries. Only those groups of measures from two of the field-based tests (ROM-37 

Sport battery and Y-Balance), as independent data sets, were able to build robust models 38 

(area under the receiver operating characteristic curve [AUC] score ≥ 0.7) to identify elite 39 

futsal players at risk of sustaining a LE-ST injury. Unlike the measures obtained from the 40 

five questionnaires selected, the neuromuscular performance measures did build robust 41 

prediction models (AUC score ≥ 0.7). The inclusion in the same data set of the measures 42 

recorded from all the questionnaires and field-based tests did not result in models with 43 

significantly higher performance scores. The model generated by the UnderBagging 44 

technique with a cost-sensitive SMO as the base classifier and using only four ROM 45 

measures reported the best prediction performance scores (AUC = 0.767, true positive 46 

rate = 65.9% and true negative rate = 62%). The models developed might help coaches, 47 

physical trainers and medical practitioners in the decision-making process for injury 48 

prevention in futsal. 49 

 50 

Keywords: Injury prevention, modelling, screening, decision-making, algorithm, 51 

decision tree 52 

53 
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1. Introduction 54 

Lower extremity non-contact soft tissue (muscle, tendon and ligament) (LE-ST) 55 

injuries are very common events in intermittent team sports such as soccer (López-56 

Valenciano et al., 2019), futsal (Ruiz-Pérez et al., 2020), rugby (Williams et al., 2013), 57 

bat (i.e. cricket and softball) and stick (i.e. field hockey and lacrosse) sports (Perera et al., 58 

2018). It has been suggested that most of these LE-ST injuries occur when the resilience 59 

of soft tissue to injury is not enough to enable athletes to tolerate the loading patterns 60 

produced during the execution of high intensity dynamic tasks (e.g. cutting, sprinting and 61 

landing) (Kalkhoven et al., 2020). Research has shown that LE-ST injuries can have 62 

major negative consequences on a team sport athlete´s career (e.g.: career termination) 63 

(Ristolainen et al., 2012) and can severely affect his/her well-being (Lohmander et al., 64 

2007). Furthermore, when several injuries are sustained, team success (Eirale et al., 2013) 65 

and club finances can suffer (Fair and Champa, 2019; Eliakim et al., 2020). Given that 66 

the risk of sustaining a LE-ST injury can be mitigated when tailored measures are 67 

delivered, development of a validated screening model to profile injury risk would be a 68 

useful tool to help practitioners address this recurrent problem in team sports. Despite the 69 

substantive efforts made by the scientific community and sport practitioners, none of the 70 

currently available screening models (based on potential risk factors) designed to identify 71 

athletes at high risk of suffering a LE-ST injury, have adequate predictive properties (i.e. 72 

accuracy, sensitivity and specificity) (Bahr, 2016).  73 

Perhaps the lack of available valid screening models to predict LE-ST injuries could 74 

be attributed to the use of statistical techniques (e.g.: traditional logistic regression) that 75 

have not been specifically designed to deal with class imbalance problems, such as the 76 

LE-ST injury phenomenon, in which the number of injured players (minority class) 77 

prospectively reported is always much lower than the non-injured players (majority class) 78 

(Galar et al., 2012; López et al., 2013; Fernández et al., 2017; Haixiang et al., 2017). 79 

Thus, in many scenarios including LE-ST injury, traditional screening models are often 80 

biased (for many reasons) towards the majority class (known as the “negative” class) and 81 

therefore there is a higher misclassification rate for the minority class instances (called 82 

the “positive” examples). Other issue with the current body of the literature is that the 83 

external validity of the screening models available may be limited because they are built 84 

and validated using the same date set (i.e. cohort of athletes). Apart from resulting in 85 

overly optimistic models´ performance scores, this evaluation approach does not indicate 86 
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the true ability of the models to predict injuries in different data sets or cohort of athletes, 87 

which may be very low and consequently, not acceptable for injury prediction purposes. 88 

This appears to be supported by the fact that the injury predictors identified by some 89 

prospective studies have not been replicated by others using similar designs and 90 

assessment methodologies but with different samples of athletes (Croisier et al., 2002, 91 

2008; Arnason et al., 2004; Brockett et al., 2004; Hägglund et al., 2006; Fousekis et al., 92 

2011; Dauty et al., 2016; Timmins et al., 2016; Van Dyk et al., 2016). These limitations 93 

have led some researchers to suggest that injury prediction may be a waste of time and 94 

resources (Bahr, 2016). 95 

In Machine Learning and Data Mining environments, some methodologies (e.g.: 96 

pre-processing, cost-sensitive learning and ensemble techniques) have been specially 97 

designed to deal with complex (i.e. non-lineal interactions among features or factors), 98 

multifactorial and class imbalanced scenarios (Galar et al., 2012; López et al., 2013; 99 

Fernández et al., 2017; Haixiang et al., 2017). These contemporary methodologies along 100 

with the use of resampling methods to assess models´ predictive power (i.e., cross-101 

validation, bootstrap and leave-one-out) may overcome the limitations inherent to the 102 

current body of knowledge and enable the ability to build robust, interpretable and 103 

generalizable models to predict LE-ST injuries. In fact, recent studies have used these 104 

contemporary methodologies and resampling methods as alternatives to the traditional 105 

logistic regression techniques to predict injuries in elite team sport athletes (Claudino et 106 

al., 2019). Unlike previous studies that used traditional logistic regression techniques to 107 

build prediction models (Fousekis et al., 2011; Zvijac et al., 2013; Opar et al., 2015; 108 

Hegedus et al., 2016; Van Dyk et al., 2016, 2017; Lee et al., 2018; OʼConnor et al., 2020), 109 

most of these recent studies (Bartlett et al., 2017; Ge, 2017; Kautz et al., 2017; Ertelt et 110 

al., 2018; López-Valenciano et al., 2018; Rossi et al., 2018; Ayala et al., 2019), although 111 

not all (Thornton et al., 2017; Ruddy et al., 2018), have reported promising results (area 112 

under the receiver operator characteristics [AUC] scores > 0.700) to predict injuries.  113 

However, one of the main limitations of most of these models built by the 114 

application of modern Machine Learning techniques lies in the fact that their use seems 115 

to be restricted to research settings (and not to applied environments) because 116 

sophisticated and expensive instruments (e.g.: isokinetic dynamometers, force platforms 117 

and GPS devices), qualified technicians and time-consuming testing procedures are 118 

required to collect such data. To the authors´ knowledge, there is only one study that has 119 
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built a robust screening model using Machine Learning techniques (extreme gradient 120 

boosting algorithms) with data from field-based tests. Rommers et al. (2020) built a model 121 

to predict injury in elite youth soccer players based on preseason anthropometric (stature, 122 

weight and sitting height) and motor coordination and physical fitness (strength, 123 

flexibility, speed, agility and endurance) measures obtained through field-based tests and 124 

reported an AUC score of 0.850.  125 

If Machine Learning techniques could build “user friendly” models with adequate 126 

predictive properties and exclusively using data obtained from questionnaires and / or 127 

cost-effective, technically undemanding and time-efficient field-based tests, then injury 128 

prediction would not be a waste of time and resource in applied settings. In case these 129 

techniques provided a trustworthy positive response, coaches, physical trainers and 130 

medical practitioners may know whether any of the currently available questionnaires and 131 

field-based tests to predict injuries itself works and a hierarchical rank could be developed 132 

based on their individual predictive ability of those that showed reasonably high AUC, 133 

true positive (TP) and true negative (TN) scores. Furthermore, this knowledge might be 134 

used to analyze the cost-benefit (balance between the time required to assess a single 135 

player and the predictive ability of the measures recorded) of including measures in the 136 

screening sessions for injury prediction. 137 

Therefore, the main purpose of this study was to develop robust screening models 138 

based on pre-season measures obtained from different questionnaires and field-based tests 139 

to prospectively predict LE-ST injuries after having applied supervise Machine Learning 140 

techniques in elite male and female futsal players. 141 

2. Materials and Methods 142 

To conduct this study, guidelines for reporting prediction model and validation 143 

studies in Health Research (Transparent Reporting of a multivariable prediction model 144 

for Individual Prognosis or Diagnosis [the TRIPOD statement]) were followed (Network, 145 

2016). The TRIPOD checklist is presented in Supplementary file 1. 146 

2.1. Participants 147 

A convenience sample of 139 (72 [age: 22.5 ± 5.2 y, stature: 1.75 ± 0.7 m, body 148 

mass: 72.9 ± 6.9 kg] males and 67 [age: 22.4 ± 5.5 y, stature: 1.64 ± 0.5 m, body mass: 149 

59.4 ± 5.1 kg] females) elite futsal players from 12 different teams (56 players [24 males 150 

and 32 females] from six club engaged in the First [top] National Spanish Futsal division 151 
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and 83 players [48 males and 35 females] from six clubs engaged in the Second National 152 

Futsal division) completed this study. Elite futsal players were selected in this study 153 

because a recent published meta-analysis on injury epidemiology reported that this sport 154 

present high incidence rates of injuries (5.3 injuries per 1000 hours of players exposure) 155 

(Ruiz-Pérez et al., 2020) and hence, urgent preventive measures are needed.  156 

To be included in this study, all players had to be free of pain at the time of the 157 

study and currently involved in futsal-related activities. Players were excluded if: a) they 158 

reported the presence of orthopedic problems that prevented the proper execution of one 159 

or more of the neuromuscular performance tests or (b) were transferred to another club 160 

and were not available for follow up testing at the end of 9-months. Only first injuries 161 

were used for any player sustaining multiple LE-ST injuries. The study was conducted at 162 

the end of the pre-season phase in 2015 (39 players from four teams), 2016 (44 players 163 

from four teams), 2017 (30 players from three teams) and 2018 (26 players from two 164 

teams) (September). Before any participation, experimental procedures and potential 165 

risks were fully explained to the players and coaches in verbal and written form and 166 

written informed consent was obtained from players. An Institutional Research Ethics 167 

committee approved the study protocol prior to data collection (DPS.FAR.01.14) 168 

conforming to the recommendations of the Declaration of Frontera. 169 

2.2. Study design 170 

A prospective cohort design was used to address the purpose of this study. In 171 

particular, all LE-ST injuries accounted for within the 9 months following the initial 172 

testing session (in-season phase) were prospectively collected for all players. 173 

Players underwent a pre-season evaluation of a number of personal, psychological, 174 

self-perceived chronic ankle instability and neuromuscular performance measurements, 175 

most of them considered potential sport-related injury risk factors. In each futsal team, 176 

the testing session was conducted at the end of the pre-season phase or beginning (within 177 

the first three weeks) of the in-season phase of the year. The testing session was divided 178 

into three different parts. The first part of the testing session was used to obtain 179 

information related to the participants’ personal or individual characteristics. The second 180 

part was designed to assess psychological measures related to sleep quality, athlete 181 

burnout and psychological characteristics related to sport performance. The subjective 182 

perception of each player regarding his/her chronic ankle joints instability was also 183 

recorded in this second part. Finally, the third part of the session was used to assess a 184 

In review



 

 

number of neuromuscular performance measures through three field-based tests. Each of 185 

the four testers who took part in this study had more than six years of experience in 186 

athletes´ screening assessment. 187 

2.2.1 Personal or individual measures 188 

The ad hoc questionnaire designed by Olmedilla, Laguna, & Redondo (2011) was 189 

used to record personal or individual measures that have been defined as potential non-190 

modifiable risk factors for sport injuries: player position (goalkeeper or outfield player), 191 

current level of play (First or Second division), dominant leg (defined as the playerʼs 192 

kicking leg), demographic measures (sex, age, body mass and stature) and the presence 193 

within the last season (yes or no) of LE-ST injuries with total time taken to resume full 194 

training and competition > 8 days. Supplementary file 2 displays a description of the 195 

personal risk factor recorded. 196 

2.2.2. Psychological risk factors 197 

The Spanish version of the Karolinska Sleep Diary (Cervelló et al., 2014) was used 198 

to measure the sleep quality of players. The Spanish version of the Athlete Burnout 199 

Questionnaire (Arce et al., 2012) was used to assess the three different dimensions that 200 

comprise athlete burnout: (a) physical/emotional exhaustion, (b) reduced sense of 201 

accomplishment and (c) sport devaluation. The Spanish version of the Psychological 202 

Characteristics Related to Sport Performance Questionnaire designed by Gimeno, Buceta 203 

& Pérez-Llanta (2012) was used to assess five different factors: (a) stress control, (b) 204 

influence of sport evaluation, (c) motivation, (d) mental skills and (e) group / team 205 

cohesion. Supplementary file 3 displays a description of the psychological risk factor 206 

recorded. 207 

2.2.3 Self-perceived chronic ankle instability 208 

The subjective perception of chronic ankle instability was measured using the 209 

Cumberland Ankle Instability Tool (CAIT). The final score was discretized into three 210 

categories of severity following the thresholds suggested by De Noronha et al. (2012): 211 

severe instability (< 22 points), moderate instability (from 22 to 27 points) and minor or 212 

no instability (> 27 points). 213 

2.2.3 Neuromuscular risk factors 214 
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Prior to the neuromuscular risk factor assessment, all participants performed the 215 

dynamic warm-up designed by Taylor et al. (2009). The overall duration of the entire 216 

warm-up was approximately 15–20 min. The assessment of the neuromuscular risk 217 

factors was carried out 3–5 min after the dynamic warm-up. 218 

Neuromuscular capability was determined from two different performance field-219 

based tests: 1) isometric hip abduction and adduction strength test (Thorborg et al., 2009) 220 

and 2) Y-Balance test (dynamic postural control) (Shaffer et al., 2013). The ROM-Sport 221 

field-based battery was also carried out to assess players´ lower extremity joints range of 222 

motion (Cejudo et al., 2020). 223 

For a matter of space, the testing maneuvers are not described below, and the reader 224 

is to refer to their original sources. Furthermore, supplementary files 4 to 6 display a 225 

description of the three field-based testing maneuvers carried and the measures recorded 226 

from each of them. 227 

The order of the tests was consistent for all participants and was established with 228 

the intention of minimizing any possible negative influence among variables. A 5-min 229 

rest interval was given between consecutive testing maneuvers. 230 

2.4. Injury Surveillance 231 

For the purpose of this study, an injury was defined as any non-contact, soft tissue 232 

(muscle, tendon and ligament) injury sustained by a player during a training session or 233 

competition which resulted in a player being unable to take a full part in future football 234 

training or match play (Bahr et al., 2020). 235 

These injuries were confirmed by team doctors. Players were considered injured 236 

until the club medical staff (medical doctor or physiotherapist) allowed for full 237 

participation in training and availability for match selection. Only thigh muscle 238 

(hamstrings, quadriceps and adductors) and knee and ankle ligament injuries were 239 

considered for the analysis as these injuries are more likely to be preventable and 240 

influenced by the investigated variables.  241 

The team medical staff of each club recorded LE-ST injuries on an injury form that 242 

was sent to the study group each month. For all LE-ST injuries that satisfied the inclusion 243 

criteria, team medical staff provided the following details to investigators: thigh muscle 244 

(hamstrings, quadriceps and adductors), knee or ankle ligament, leg injured 245 

(dominant/nondominant), injury severity based on lay-off time from futsal 246 
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[slight/minimal (0–3 d), mild (4–7 d), moderate (8–28 d), and severe (>28 d)], date of 247 

injury, moment (training or match), whether it was a recurrence (defined as a soft tissue 248 

injury that occurred in the same extremity and during the same season as the initial injury) 249 

and total time taken to resume full training and competition. At the conclusion of the 9-250 

month follow-up period, all data from the individual clubs were collated into a central 251 

database, and discrepancies were identified and followed up at the different clubs to be 252 

resolved. Some discrepancies among medical staff teams were found to diagnose minimal 253 

LE-ST injuries and to record their total time lost. To resolve these inconsistencies in the 254 

injury surveillance process (risk of misclassification of the players), only ST-LE injuries 255 

showing a time lost of >8 d (moderate to severe) were selected for the subsequent 256 

statistical analysis. 257 

2.5. Statistical analysis  258 

After having completed an exhaustive data cleaning process (detected anomalies or 259 

errors were removed [16 cases] and missing data [2.3%] were replaced by the mean value 260 

of the corresponding variable according to the sex [male or female] of the players) we 261 

had an imbalanced (showing an imbalance ratio of 0.22) and a high-dimensional data set 262 

comprising of 72 male and 67 female futsal players (instances) and 66 potential risk 263 

factors (features). In this study, an anomalies or error was defined as a score or value that 264 

could not be classified as real or true because of the consequence of a human error or a 265 

machine failure. An example of an error was a hip adductor PT value of 1500 N because 266 

the measurement range of the handheld dynamometer used was from 0 to 1335 N. 267 

Prior to analysis, continuous data were discretized as this can improve the 268 

performance of some classifiers (Hacibeyoglu et al., 2011). Continuous variables were 269 

discretized using the unsupervised discretization algorithm available in Weka repository 270 

(Waikato Environment for Knowledge Analysis, version 3.8.3), selecting the option 271 

“optimize the number of equal-width bins” (a maximum of 10 bins were allowed per 272 

variable). 273 

Afterward, eleven data sets were built. In particular, five data sets were built using 274 

the personal (data set [DS] 1 – personal variables), psychological (DS 2 – sleep quality, 275 

DS 3 – athlete burnout and DS 4 – psychological characteristics related to sport 276 

performance) and self-perceived (DS 5 – player´s self-perceived chronic ankle joint 277 

stability) measures recorded from the questionnaires selected in this study. Likewise, 278 

three data sets were also built using the data from each of the three field-based tests carried 279 
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out (DS 6 – ROM-Sport battery, DS 7 – isometric hip abduction and adduction strength 280 

test and DS 8 – Y-Balance test). Finally, three extra data sets were built, one that grouped 281 

all the measures obtained from the questionnaires (DS 9 – questionnaire-based personal, 282 

psychological and self-perceived measures), another one that included all the 283 

neuromuscular performance measures recorded from the field-based tests (DS 10 – 284 

neuromuscular performance measures from field-based tests) and finally one that 285 

contained all measures recorded (DS 11 – global).  286 

The taxonomy for learning with imbalanced data sets proposed by Galar et al. 287 

(2012) and Lopez et al.(López et al., 2013) was applied in each data set. Furthermore, this 288 

taxonomy was implemented with the approach recently proposed by Elkarami et al. 289 

(2016) because of the good results (in term of predictive performances) showed to handle 290 

imbalanced data sets (supplementary file 7). 291 

Four classifiers based on different paradigms, namely decision trees with C4.5 292 

(Quinlan, 1996) and ADTree  (Freund and Mason, 1999), Support Vector Machines with 293 

SMO (Gove and Faytong, 2012) and the well-known k-Nearest Neighbor (KNN) 294 

(Steinbach and Tan, 2009) as an Instance-Based Learning approach were selected. The 295 

configuration of each base classifier was optimized through the use of the metaclassifier 296 

MultiSearch.  297 

Due to the high dimensionality of the DS 10 - neuromuscular measures from field-298 

based tests (47 variables) and DS 11 - Global (66 variables), before running the algorithms 299 

included in the taxonomy just described, a feature selection process was carried out. In 300 

particular, we used the metaclassifier “attribute selected classifier” (with GreedyStepwise 301 

as search technique) available in Weka´s repository to address the feature selection 302 

process. 303 

To evaluate the performance of the algorithms, the fivefold stratified cross-304 

validation technique was used (Refaeilzadeh et al., 2009). The fivefold stratified cross 305 

validation was repeated a hundred times and results were averaged over the runs to obtain 306 

a more reliable estimate for the generalization ability. 307 

The AUC and F-score were used as measures of a classifier´s performance (Altman 308 

and Bland, 1994; Zou et al., 2016). Only those algorithms whose performance scores 309 

(AUC) were higher than 0.70 were considered as acceptable for the purposes of this study 310 

and included in the intra and inter dataset comparisons analyses. Furthermore, two extra 311 
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measures from the confusion matrix were also used as evaluation criteria: (a) true positive 312 

(TP) rate also called sensitivity or recall and (b) true negative (TN) rate or specificity. 313 

In order to compare the performance of the algorithms ran in each data set (intra 314 

data set comparisons) and whose AUC scores were > 0.70, the F score was selected as 315 

criterion measure. These comparisons were conducted using separate Bayesian inference 316 

analyses (Lee & Wagenmakers, 2013; Rouder et al., 2012; Wagenmakers et al., 2018). In 317 

those data sets in which (at least) a strong evidence for rejecting null hypothesis (H0 = no 318 

differences across algorithms´ performance scores) was found (Bayesian factor [BF10] 319 

>10), a post hoc procedure was carried out to identify the best performing model. In the 320 

cases in which either there would not be a strong evidence for rejecting H0 or a group of 321 

algorithms showed the highest F-score results (without any relevant difference [BF10 < 322 

10] among then), the best-performing algorithm for this dataset would be the one that 323 

showed the highest F-scores. 324 

 Finally, the best performing algorithm of each of the data sets were compared (inter 325 

dataset comparisons) using the same statistical approach in order to know which 326 

questionnaire, field-based test or combination showed the best ability to predict moderate 327 

LE-ST injuries in elite male and female futsal players.   328 

3. Results 329 

3.1. Soft-tissue lower extremity injuries epidemiology 330 

There were 31 (16 in males and 15 in females) soft tissue injuries over the follow-331 

up period, 17 (54.8%) of which corresponded to thigh muscles (seven hamstrings, four 332 

quadriceps and six adductors) injuries, eight (25.8%) to knee ligament and six (19.3%) to 333 

ankle ligament. Injury distribution between the legs was 74.1% dominant leg and 25.9% 334 

nondominant leg. A total of 13 injures occurred during training and 18 during 335 

competition. In terms of severity, most injures were categorized as moderate (n = 23), 336 

whereas only eight cases were considered severe injuries (five anterior cruciate ligament 337 

injuries). Five players sustained multiple soft tissue non-contact lower extremity injuries 338 

during the observation period, so their first injury was used as the index injury in the 339 

analyses. Consequently, 25 soft-tissue injuries were finally used to develop the prediction 340 

models. 341 

3.2. Prediction models for soft tissue lower extremity injuries 342 
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All data sets are publicly available on 343 

https://data.mendeley.com/datasets/s7fs9k3nby/1. As all the algorithms selected in this 344 

study can be found in the Weka experimenter, only the scheme (and not the full code) of 345 

algorithms selected in each data set are displayed in supplementary file 19 in order to 346 

allow practitioners to replicate our analyses and to use the models generated with their 347 

futsal players. 348 

 349 

3.2.1. Intra data set comparisons 350 

As displayed in the supplementary files 8 to 18, only four (DS 6 – lower extremity 351 

joint ranges of motion, DS 8 – dynamic postural control, DS 10 – neuromuscular 352 

performance measures from field-based tests and DS 11 – Global) out of 11 data sets 353 

resulted in the ability of the classification algorithms to build prediction models for LE-354 

ST injuries with AUC scores ≥ 0.7. 355 

 For the DS 6 - lower extremity joint ranges of motion, a total of 23 learning 356 

algorithms showed AUC scores ≥ 0.7. The Bayesian inference analysis carried out with 357 

these 23 algorithms (Bayesian ANOVA) reported the presence of relevant differences 358 

(BF10 > 100 [extreme evidence for supporting H1]) among their prediction performance 359 

scores. The subsequent post hoc analysis identified a sub-group of four algorithms whose 360 

F-scores were similar among them (F-scores ranging from 0.422 to 0.450) and also 361 

statistically higher (BF10 >10) than the rest (table 1). Among these four algorithms, the 362 

one that showed the highest F-score was the CS-Classifier technique with ADTree as base 363 

classifier (figure 1). 364 

****Table 1 near here**** 365 

****Figure 1 near here**** 366 

For its part, the DS 8 – dynamic postural control only allowed to the class-balanced 367 

ensemble CS-UBAG with C4.5 as base classifier building a model with AUC scores ≥ 368 

0.7 (AUC = 0.701 ± 0.112). In this sense, this model is comprised for 100 different C4.5 369 

decision trees (figure 2 shows an example of one of these C4.5 decision trees, the rest can 370 

be got upon request to the authors). 371 

****Figure 2 near here**** 372 
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 The feature selection process carried out in the DS 10 – neuromuscular measures 373 

from field-based tests identified a subset of four ROM measures as the most relevant 374 

(considering the individual predictive ability of each feature along with the degree of 375 

redundancy among them) on which was subsequently applied the taxonomy of learning 376 

algorithms described in the method section. Thus, a total of 66 algorithms built (using 377 

this subset of features) prediction models with AUC scores ≥ 0.7. The Bayesian analysis 378 

conducted with these 66 algorithms documented the existence of relevant differences 379 

(with an extreme degree of evidence [BF10 > 100]) among their predictive ability scores. 380 

The subsequent post hoc analysis reported that a group of three algorithms showed similar 381 

F-scores among them (ranging from 0.458 to 0.474) but significantly higher than the rest. 382 

Therefore, the selection of the best performing algorithm of this DS 10 was based on the 383 

highest F-score. Thus, the algorithm CS-UBAG with SMO as base classifier was the one 384 

that showed the highest F-score (0.474 ± 0.111) and hence, it was selected for the inter 385 

data set comparisons. Figure 3 displays an example of the 100 predictors than this 386 

prediction model is comprised (the rest can be got upon request to the authors). 387 

****Figure 3 near here**** 388 

The DS 11, that comprised of the 66 personal (n = 8), psychological (n = 9), self-389 

perceived chronic ankle instability (n = 2) and neuromuscular performance (47) features 390 

was reduced to a subset of six features by the feature selection metaclassifier selected, 391 

from which four were ROM measures, one was a self-perceived chronic ankle instability 392 

measure and the last one belonged to the group of personal measures (table 2). This sub-393 

set of features allowed 59 algorithms building prediction models showing AUC scores ≥ 394 

0.7. Finally, and it is showed in the table 1, the Bayesian inference and the subsequent 395 

post hoc analyses identified the class-balanced ensemble CS-UBAG with C4.5 as base 396 

classifier as the best-performing algorithm (AUC = 0.749 ±0.105, TP rate = 75.5% ±23.6, 397 

TN rate = 62.7 ±11.5, F-score = 0.436 ±0.122). An example of the 100 C4.5 decision 398 

trees that comprised this model is presented in figure 4. 399 

****Figure 4 near here**** 400 

****Table 2 near here**** 401 

3.2.2. Inter data set comparisons 402 

The inter data set comparison analysis carried out with the best-performing 403 

algorithms of the DS 6 (CS-Classifier [ADTree]), 8 (CS-UBAG [C4.5]), 10 (CS-UBAG 404 
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[SMO]) and 11 (CS-UBAG [C4.5]) showed that the algorithm of the DS 8 obtained 405 

significantly lower F-scores than the other three algorithms (BF10 > 100). However, there 406 

were no statistically differences among the algorithms from the DS 6, 10 and 11. Among 407 

these three algorithms, the one from the DS 10 demonstrated the highest F-score and was 408 

considered as the “winning model” (table 2). Models from DS 8, 10 and 11 are comprised 409 

by 100 classifiers. In term of practical applications, each classifier has a vote or decision 410 

(yes [high risk of LE-ST injury] or no [lower risk of LE-ST injury]), and the final decision 411 

regarding whether or not a player might suffer an injury is based on the combination of 412 

the votes of each individual classifier to each class (yes or no). 413 

4. Discussion 414 

The main findings of this study indicate that only those groups of measures from 415 

two of the field-based tests (ROM-Sport battery [AUC = 0.751 ± 0.124] and Y-Balance 416 

[AUC = 0.701 ± 0.114]), as independent data sets, can build robust models (AUC ≥ 0.7) 417 

to identify elite futsal players at risk of sustaining a LE-ST injury. One of the possible 418 

reasons why only the lower extremity ROM and dynamic postural control measures can 419 

separately build robust prediction models may be related to the fact that they play a 420 

significant role in the hazardous lower extremity movement patterns performed by futsal 421 

players. In particular the execution of numerous weight-bearing high intensity locomotive 422 

actions (e.g.: cutting, landing and sprinting) that may produce excessive dynamic valgus 423 

at the knee with limited hip and knee flexion ROMs, which have been identified as 424 

primary and modifiable LE-ST injury patterns (Robinson and Gribble, 2008; Thorpe, JL. 425 

Ebersole et al., 2008; Lockie et al., 2013; Ambegaonkar et al., 2014; Booysen et al., 2015; 426 

Overmoyer and Reiser, 2015). The fact that the best-performing model built with the 427 

ROM data set (DS 6) showed a significantly higher prediction performance (and also less 428 

decision trees [1 vs. 100]) than its counterpart model built with the dynamic postural 429 

control data set (DS 7) (F-score = 0.450 vs. 0.388) may be due to the fact that the scores 430 

obtained thorough the Y-Balance test are widely influenced by hip and knee flexion and 431 

the ankle dorsiflexion ROM measures in the sagittal plane and to less extend by dynamic 432 

core stability (in the frontal plane) and isokinetic knee flexion strength measures (Ruiz-433 

Pérez et al., 2019). Thus, the dynamic postural control measures obtained from the Y-434 

Balance test might have allowed the construction of a model with an acceptable prediction 435 

ability mainly due to the influence of whole lower limb posterior kinetic chain ROMs in 436 

the distances reached. This hypothesis may also be supported by the fact that the feature 437 
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selection process carried out in the data set in which all the neuromuscular performance 438 

measures were grouped (DS 10) and also in the data set that contained all the measures 439 

recorded in this study (DS 11) did not consider any of the dynamic postural control 440 

measures in contrast to the hip flexion and ankle dorsiflexion ROM measures that were 441 

considered LE-ST injury predictors. 442 

Previous studies have explored the individual predictive ability of some (but not 443 

many) field-based tests (e.g.: Y-Balance (Butler et al., 2013), leg squat (OʼConnor et al., 444 

2020), side plank (Hegedus et al., 2016) and drop jump (Myer et al., 2010, 2011)) to 445 

identify athletes from intermittent team sports at high risk of LE-ST injury using 446 

traditional logistic regression techniques. Most of these studies have reported models 447 

exhibiting high sensitivity values (TN rates) but very low specificity values (TP rates) 448 

and hence, cannot be used for injury prediction. For example, O´Connor et al. (2020) 449 

examined whether a standardized visual assessment of squatting technique and core 450 

stability can predict lower extremity injuries in a large sample of collegiate Gaelic players 451 

(n = 627). The logistic regression-based model generated revealed that while the TP rate 452 

was moderate to high (76%) the TN rate was low (44%). This circumstance reflects one 453 

of the main limitations inherent in traditional regression techniques, that is to say, they 454 

do not deal well with imbalanced data sets (their models usually are biased toward the 455 

majority class [true negative rates] to optimize the percentage of well-classified instances) 456 

(Galar et al., 2012). Furthermore, the validation technique applied to the models generated 457 

in these studies may not be exigent enough to ensure that the phenomenon of over-fitting 458 

was minimized as the models were validated using the data from the population with 459 

whom the prediction equations were generated (Bahr, 2016; Jovanovic, 2017). 460 

Due to their high cost (approximately 250€ per unit) currently available GPS 461 

systems may not be considered as accessible tools for most practitioners that work in 462 

applied sport settings, however, it should be noted that prediction models to identify team 463 

sport athletes (mainly soccer and rugby players) at risk of sustaining a LE-ST injury based 464 

exclusively on external training workload measures and built using learning algorithms 465 

are available (Bartlett et al., 2017; Thornton et al., 2017; Rossi et al., 2018). However, 466 

only the model reported by Rossi et al., (2018) has shown AUC scores ≥ 0.7 after 16 467 

weeks of data collection (AUC = 0.760). The predictive ability of the model built by Rossi 468 

et al. (2018) is very similar to the predictive ability shown in our best-performing 469 

prediction model built using only lower extremity ROM measures (AUC = 0.757). 470 
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Nevertheless, our prediction model based on ROM measures has a higher external 471 

validity for practitioners in applied environments due to two main aspects. Firstly, the 472 

low cost of the materials needed to conduct the assessment maneuvers (inclinometer with 473 

a telescopic arm = 200€, lumbar protection support = 50€). Secondly, our model was 474 

developed and validated using ROM measures from 139 elite futsal players from 12 475 

different teams, whereas Rossi et al. (2018) only assessed the external training workload 476 

of 26 elite soccer players all from the same team. Consequently, the model displayed by 477 

Rossi et al.(2018) can only be used by the medical and performance staff of the team in 478 

which the external workload measures were collected due (among other factors) to the 479 

high inter-team differences in training and competitive calendars, drills prescribed in 480 

training sessions and tactical systems adopted throughout match play.  481 

The results of this study also reported that the combination in the same data set (DS 482 

9) of all the measures obtained from the five questionnaires selected did not permit 483 

classification algorithms to build prediction models with acceptable performance scores 484 

(AUC scores ranged from 0.443 to 0.558). Previous studies have documented the 485 

existence of significant associations between some personal characteristics (e.g.: age 486 

(Arnason et al., 2004; Hägglund et al., 2006; Dauty et al., 2016) and recent history of 487 

injury (Brockett et al., 2004; Hägglund et al., 2006; López-Valenciano et al., 2018; Ayala 488 

et al., 2019)), psychological constructs (e.g.: physical/emotional exhaustion, reduce sense 489 

of accomplishment, sports devaluation (Cresswell and Eklund, 2006; Moen et al., 2016)) 490 

and self-perceived chronic ankle instability (Hiller et al., 2006, 2011), sleep quality 491 

(López-Valenciano et al., 2018; Palucci Vieira et al., 2020) measures and LE-ST injury. 492 

However, it may be possible that the magnitude of these associations between the 493 

questionnaire-based measures and LE-ST injury, neither individually nor collectively, are 494 

strong enough to build robust models with the aim of identifying elite futsal players at 495 

risk of LE-ST injury. On the contrary, the grouping in the same data set (DS 10) of all the 496 

neuromuscular performance measures obtained from the three field-based tests did permit 497 

prediction models to be built with moderate performance scores (AUC ≥ 0.7). The feature 498 

selection technique applied to this data set with the aim of reducing its dimensionality (46 499 

features) through deleting redundant and not relevant measures (considered as noise) only 500 

selected four ROM measures, with whom the CS-UBAG method with SMO as base 501 

classifier built a prediction model with AUC and F-scores of 0.767 and 0.474, 502 

respectively. This model reported the highest performance scores, together with the fact 503 
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that only two hip and two ankle ROM measures are needed to run the screen in a single 504 

player making it appropriate for applied scenarios. Finally, the inclusion in the same data 505 

set (DS 11) of all the eight groups of measures obtained from the five questionnaires and 506 

three field-based tests did not result in models with significantly higher performance 507 

scores and hence, the null hypothesis was rejected.  508 

The prediction properties of the “model of best fit” of the current study were lower 509 

than that reported by the only other study that has used Machine Learning techniques to 510 

develop a screening model based on field-based measures (AUC = 0.767 vs 0.850, TP 511 

rate = 85% vs. 85%, TN rate = 62% vs. 85%) (Rommers et al., 2020). One of the potential 512 

reasons that may explain this difference in models´ predictive performance in favor of 513 

Rommers et al.´s (2020) model can be attribute to its higher sample size (734 elite young 514 

soccer players vs. 139 elite adult futsal players) and the less rigorous resampling 515 

technique applied in its validation process (hold out with 20% of the sample [test data set] 516 

vs. 5-folds stratified cross validation). Although the predictive properties of our model 517 

are lower than Rommers et al.´s (2020) model (but they are acceptable for an injury 518 

prediction standpoint), it should be highlighted that only four ROM measures and 5 519 

minutes are needed to run the screen in a single player, unlike Rommers et al.´s (2020) 520 

model that requires 20 measures obtained from a questionnaire and five different field-521 

based tests, which can take longer than 45 min to collect all of them in a single player. 522 

The current study has a number of limitations that must be acknowledged. The first 523 

potential limitation of the current study is the population used. The sport background of 524 

participants was elite futsal and the generalizability to other sport modalities and level of 525 

play cannot be ascertained. Although all the measures recorded during the screening 526 

session are purported as LE-ST injury risk factors, there are a number of other measures 527 

from different questionnaires and field-based tests not included in this study (due to time 528 

constraints) which have been associated with LE-ST injury (e.g.: back extensor and flexor 529 

endurance measures, bilateral leg strength asymmetries, relative leg stiffness and reactive 530 

strength index) and that may have improved the ability to predict LE-ST injuries in this 531 

cohort of athletes. Neither situational (e.g.: pressing and tackling, regaining balance after 532 

kicking, side-stepping and landing from a jump) nor movement (e.g.: excessive dynamic 533 

knee valgus motion at the knee, limited hip and knee flexion angles) patterns for those 534 

futsal players who suffered a LE-ST injury were recorded for this study due to technical 535 

reasons (i.e. training sessions and matches were not recorded and hence, a systematic 536 
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biomechanical/kinematic video analysis on injury patterns was not possible to be 537 

conducted). Although the main findings of this study may help identify futsal players at 538 

high risk of LE-ST injury, having included information regarding situational and 539 

movement injury patterns in the models might have not only increase their predictive 540 

performance scores but shed light on why and how LE-ST injuries occur in futsal players. 541 

Despite the fact that the number of both futsal players assessed (n = 139) and LE-ST 542 

injuries recorded (n = 25) was large enough to build robust prediction models, the 543 

inclusion of more instances in the learning processes of the models may have improved 544 

their performance scores. Finally, out of the 88 possible combinations of measures that 545 

could have been analyzed with the data from the five questionnaires and three field-based 546 

tests, only three of them were explored, from both a time perspective and based on those 547 

that would be most interesting from a practitioner perspective. Therefore, it is unknown 548 

if other combinations of measures, different from the ones analyzed in this study, may 549 

have provided prediction models with higher AUC scores. 550 

In conclusion, thanks to the application of novel machine learning techniques, the 551 

current study has developed four screening models based on field-based measures 552 

(mainly ROM and dynamic postural control features) that showed moderate accuracy 553 

(AUC scores ranged from 0.701 to 0.767, determined all through the exigent cross-554 

validation resampling technique) for identifying elite futsal players at risk of LE-ST 555 

injury. The “model of best fit” of the current study (AUC = 0.767, TP rate = 85% and TN 556 

rate = 62%) was comprised by only two hip (flexion with knee extended and abduction) 557 

and two ankle (dorsiflexion with knee flexed and extended) ROM measures and ten 558 

different classifiers. Given that these ROM measures require little equipment to be 559 

recorded and can be employed quickly (approximately 5 minutes) and easily by trained 560 

staff in a single player, the model developed in this study should be included as an 561 

essential component of the injury management strategy in elite futsal.    562 

563 
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TABLE CAPTIONS 838 

Table 1. Features selected (displayed for order of importance) after having applied the 839 

classify subset evaluator filter to the data sets (DS) 10 and 11. 840 

 841 

ROM: range of motion; HFKE: hip flexion with the knee extended; HABD: hip abduction 842 

at 90º of hip flexion; AKDFKE: ankle dorsi-flexion with the knee extended; AKDFKF: 843 

ankle dorsi-flexion with the knee flexed; BIL: bilateral ratio 844 

 845 

846 

Neuromuscular measures from field-based tests (DS – 10) 

ROM-HFKE [dominant leg] 

ROM-AKDFKE [dominant leg] 

ROM- AKDFKF [dominant leg] 

ROM-BIL- HABD 

Global (DS – 11) 

ROM-HFKE [dominant leg] 

ROM-AKDFKE [dominant leg] 

ROM- AKDFKF [dominant leg] 

ROM-BIL- HABD 

Self-perceived chronic ankle instability [non-dominant leg] 

History of lower extremity soft tissue injury last season 
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Table 2. Best-performing sub-set of algorithms for those data sets (DS) that allowed 847 

building prediction models with AUC scores ≥0.7. Highlighted in bold are the algorithms 848 

selected in each DS for the posterior inter-group comparative analysis. 849 

 850 

Technique 
Performance measures 

AUC TP rate (%) TN rate (%) F-score 

 Lower extremity joint ranges of motion (DS – 6) 

ADTree 0.754 ± 0.122 35.8 ± 21.6  93.4 ± 6.3 0.433 ± 0.195 

ROS [ADTree] 0.745 ± 0.126 46.1 ± 23.5 87.4 ± 8.3 0.442 ± 0.188 

CS-Classifier [ADTree] 0.757 ± 0.124 44.7 ± 23.2 89.1 ± 8.4 0.450 ± 0.184 

CS-UBAG [ADTree] 0.737 ±0.106 48.3 ±  21.5 83.0 ± 8.1 0.422 ± 0.161 

 Dynamic postural control (DS – 8) 

CS-UBAG [C4.5] 0.701 ± 0.114 64.9 ± 21.1 63.3 ± 10.4 0.388 ± 0.109 

 Neuromuscular measures from field-based tests (DS – 10) 

CS-OBAG [SMO] 0.760 ± 0.103 83.3 ± 22.9 62.9 ± 10.0 0.469 ± 0.115 

CS-UBAG [C4.5] 0.748 ± 0.089 87.6 ± 20.3 57.2 ± 10.7 0.458 ± 0.100 

CS-UBAG [SMO] 0.767 ± 0.096 85.1 ± 21.4 62.1 ± 9.8 0.474 ± 0.111 

 Global (DS – 11) 

OBAG [SMO] 0.742 ± 0.125 51.3 ± 25.5 79.5 ± 9.6 0.410 ± 0.179 

UBAG [SMO] 0.737 ± 0.121 54.7 ± 25.6 76.3 ± 10.2 0.410 ± 0.171 

CS-OBAG [C4.5] 0.751 ± 0.107 60.9 ± 28.2 73.2 ± 10.6 0.418 ± 0.163 

CS-OBAG [SMO] 0.747 ± 0.121 65.1 ± 27.9 70.1 ± 11.3 0.423 ±  0.151 

CS-UBAG [C4.5] 0.749 ± 0.105 75.5 ± 23.6 62.7 ± 11.5 0.436 ± 0.122 

CS-UBAG [ADTree] 0.741 ± 0.119 62.0 ± 27.3 72.0 ± 10.4 0.419 ± 0.161 

CS-UBAG [SMO] 0.747 ± 0.116 70.8 ± 26.1 66.5 ± 10.9 0.433 ± 0.137 

CS-UBAG [IBK] 0.722 ± 0.124 71.8 ± 23.9 61.6 ± 12.3 0.413 ± 0.122 

CS-SBAG [C4.5] 0.755 ± 0.115 55.7 ± 28.2 76.2 ± 11.0 0.409 ± 0.175 

CS-SBAG [SMO] 0.750 ± 0.121 58.4 ± 27.2 74.7 ± 11.1 0.416 ± 0.164 

AUC: area under the ROC curve; TP rate: true positive rate; TN rate: true negative rate. 851 

852 
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FIGURE CAPTIONS 853 

Figure 1. Graphical representation of the first classifier of the DS 6 (lower extremity joint 854 

ranges of motion). Prediction nodes are represented by ellipses and splitter nodes by 855 

rectangles. Each splitter node is associated with a real valued number indicating the rule 856 

condition, meaning: If the feature represented by the node satisfies the condition value, 857 

the prediction path will go through the left child node; otherwise, the path will go through 858 

the right child node. The numbers before the feature names in the prediction nodes 859 

indicate the order in which the different base rules were discovered. This ordering can to 860 

some extent indicate the relative importance of the base rules. The final classification 861 

score produced by the tree is found by summing the values from all the prediction nodes 862 

reached by the instance, with the root node being the precondition of the classifier. If the 863 

summed score is greater than zero, the instance is classified as true (low risk of LE-ST 864 

injury). 865 

Figure 2. Graphical representation of the first classifier of the DS 8 (dynamic postural 866 

control). The arrows show the single pathway (transverse to the tree) through the classifier 867 

that should be followed according to participant´s scores in order to achieve a dichotomic 868 

output (high [Yes] or low [No] risk of LE-ST injury. 869 

Figure 3. Description of the first classifier of the DS 10 (field-based tests). 870 

Figure 4. Graphical representation of the first classifier of the DS 11 (global). The arrows 871 

show the single pathway (transverse to the tree) through the classifier that should be 872 

followed according to participant´s scores in order to achieve a dichotomic output (high 873 

[Yes] or low [No] risk of LE-ST injury. 874 

875 
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SUPPLEMENTARY MATERIAL CAPTIONS 876 

Supplementary file 1. TRIPOD Checklist: Prediction Model Development and 877 

Validation. 878 

Supplementary file 2. Description of the personal or individual injury risk factors 879 

recorded. 880 

Supplementary file 3. Description of the psychological risk factors recorded. 881 

Supplementary file 4. Description of the testing manoeuvre and measures obtained from 882 

the isometric hip abduction and adduction strength test. 883 

Supplementary file 5. Description of the testing manoeuvre and measures obtained from 884 

the Y-Balance test. 885 

Supplementary file 6. Description of the testing manoeuvre and measures obtained from 886 

the ROM-Sport battery. 887 

Supplementary file 7. Descriptions of the resampling, ensemble and cost-sensitive 888 

algorithms applied to the base classifiers. 889 

Supplementary file 8. AUC results (mean and standard deviation) of the personal or 890 

individual characteristics data set (DS 1) for the five base classifiers in isolation and after 891 

applying in them the resampling, ensemble (Classic, Boosting-based, Bagging-based and 892 

Class-balanced ensembles) and cost-sensitive learning techniques selected. 893 

Supplementary file 9. AUC results (mean and standard deviation) of the sleep quality data 894 

set (DS 2) for the four base classifiers in isolation and after applying in them the 895 

resampling. ensemble (Classic, Boosting-based, Bagging-based and Class-balanced 896 

ensembles) and cost-sensitive learning techniques selected. 897 

Supplementary file 10. AUC results (mean and standard deviation) of the Athlete Burnout 898 

data set (DS 3) for the four base classifiers in isolation and after applying in them the 899 

resampling. ensemble (Classic, Boosting-based, Bagging-based and Class-balanced 900 

ensembles) and cost-sensitive learning techniques selected. 901 

Supplementary file 11. AUC results (mean and standard deviation) of the psychological 902 

characteristics related to sport performance data set (DS 4) for the four base classifiers in 903 

isolation and after applying in them the resampling. ensemble (Classic, Boosting-based, 904 
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Bagging-based and Class-balanced ensembles) and cost-sensitive learning techniques 905 

selected. 906 

Supplementary file 12. AUC results (mean and standard deviation) of the self-perceived 907 

chronic ankle instability data set (DS 5) for the four base classifiers in isolation and after 908 

applying in them the resampling. ensemble (Classic, Boosting-based, Bagging-based and 909 

Class-balanced ensembles) and cost-sensitive learning techniques selected. 910 

Supplementary file 13. AUC results (mean and standard deviation) of the lower extremity 911 

joint ranges of motion data set (DS 6) for the five base classifiers in isolation and after 912 

applying in them the resampling, ensemble (Classic, Boosting-based, Bagging-based and 913 

Class-balanced ensembles) and cost-sensitive learning techniques selected. 914 

Supplementary file 14. AUC results (mean and standard deviation) of the isometric hip 915 

abduction and adduction strength data set (DS 7) for the five base classifiers in isolation 916 

and after applying in them the resampling, ensemble (Classic, Boosting-based, Bagging-917 

based and Class-balanced ensembles) and cost-sensitive learning techniques selected. 918 

Supplementary file 15. AUC results (mean and standard deviation) of the dynamic 919 

postural control data set (DS 6) for the five base classifiers in isolation and after applying 920 

in them the resampling, ensemble (Classic, Boosting-based, Bagging-based and Class-921 

balanced ensembles) and cost-sensitive learning techniques selected. 922 

Supplementary file 16. AUC results (mean and standard deviation) of the measures 923 

obtained through questionnaires data set (DS 6) for the five base classifiers in isolation 924 

and after applying in them the resampling, ensemble (Classic, Boosting-based, Bagging-925 

based and Class-balanced ensembles) and cost-sensitive learning techniques selected. 926 

Supplementary file 17. AUC results (mean and standard deviation) of the field-based tests 927 

of neuromuscular performance data set (DS 6) for the five base classifiers in isolation and 928 

after applying in them the resampling, ensemble (Classic, Boosting-based, Bagging-based 929 

and Class-balanced ensembles) and cost-sensitive learning techniques selected. 930 

Supplementary file 18. AUC results (mean and standard deviation) of the global data set 931 

(DS 11) for the five base classifiers in isolation and after applying in them the resampling, 932 

ensemble (Classic, Boosting-based, Bagging-based and Class-balanced ensembles) and 933 

cost-sensitive learning techniques selected. 934 
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Supplementary file 19: schemes of the algorithms selected in data sets (DS) 6, 8, 10 and 935 

11. 936 
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